
HOW TO ENABLE HPC SYSTEM
DEMAND RESPONSE: AN
EXPERIMENTAL STUDY
Kishwar Ahmed
Florida International University

Kazutomo Yoshii (speaker)
Argonne National Laboratory

Outline
• Motivation
• DVFS-based Demand Response
• Power-capping-based Demand Response
• Experiments on Chameleon Cluster
• Conclusions

2

What is Demand Response (DR)?
• DR: Participants reduce energy consumption

• During transient surge in power demand
• Other emergency events

• A DR example:
• Extreme cold in beginning of

January 2014
• Closure of electricity grid
• Emergency demand response in

PJM and ERCOT

Energy reduction target at PJM on January 2014

3

Demand Response Is Popular!

4

HPC System as DR Participant?
• HPC system is a major energy consumer

• China’s 34-petaflop Tianhe-2 consumes 18MWs of power
• Can supply small town of 20,000 homes

• The power usage of future HPC system is projected to increase
• Future exascale supercomputer has power capping limit
• But not possible with current system architecture

• Demand response aware job scheduling envisioned as
possible future direction by national laboratories
[“Intelligent Job Scheduling” by Gregory A. Koenig-ORNL]

5

HPC System as DR Participant?
(Contd.)
• A number of recent surveys on possibility of

supercomputer’s participation in DR program
• Patki et al. (in 2016)

• A survey to investigate demand response participation of 11
supercomputing sites in US

• “…SCs in the United States were interested in a tighter integration
with their ESPs to improve Demand Management (DM).”

• Bates et al. (in 2015)
• “…the most straightforward ways that SCs can begin the process

of developing a DR capability is by enhancing existing system
software (e.g., job scheduler, resource manager)”

6

Power-capping
• What is power-capping?

• Control knobs that allow users to specify the upper limit of power
consumption of CPUs, memory or the entire node

• Power-capping is important
• To achieve global power cap for the cluster

• Power-capping is common in modern processors
• Intel processors support power capping through RAPL interface

 opportunistically adjusts voltage and frequency based on
thermal and energy constraints

• AMD processors’ Advanced Power Management Link (APML)
technology

• NVIDIA GPU’s NVIDIA Management Library (NVML)

7

Related Works
• Data center and smart building demand response

• Workload scheduling: such as load shifting in time, geographical
load balancing

• Resource management: server consolidation, speed-scaling
• However,

• These approaches are applicable for internet transaction-based
data center workload

• Service time for data center workload are assumed uniform and
delay-intolerant

• HPC system demand response
• Recently, we are proposing HPC system demand response model

• Based on
• dynamic voltage frequency scaling (DVFS)
• Power capping

8

DVFS-based Demand Response

9

DVFS-based Demand Response
• Power and performance prediction model

• Based on a polynomial regression model
• Resource provisioning

• Determine processors’ optimal frequency to run the job
• Job scheduling

• Based on FCFS with possible job eviction (to ensure power bound
constraint)

10

Power and Performance Prediction

11

Power and Performance Prediction

12

P = A*C*V2*f + Pstatic
V is proportional to f
=> P ≈ f3

Optimal Frequency Allocation
• Determine optimal frequency such that

• Energy consumption is optimized during demand response period
• Highest frequency during normal periods to ensure highest

performance

13

Job Scheduler Simulator (Contd.)

14

Experiment
• Workload trace collected from Parallel Workloads Archive
• Power and performance data collected from literature for

HPC applications
• Two scheduling policies

• Used in Linux kernel of Intel processors
• Performance-policy

• Always chooses maximum frequency to ensure best application runtime
• Powersave-policy

• Always chooses the minimum frequency to minimize the power
consumption

15

Energy vs. Performance

Observation: Reduced energy consumption with focus on
demand response periods

16

Impact of Demand-response Event
Ratio

Observation: Average energy decreases with longer
demand response event

17

Power-capping-based Demand Response

18

Applications and Benchmarks
Benchmark Type Description Applications Application

Description

Scalable science
benchmarks

Expected to run at full scale of
the CORAL systems

HACC, Nekbone,
etc.

Compute
intensity, small
messages,
allreduce

Throughput
benchmarks

Represent large ensemble runs UMT2013,
AMG2013, SNAP
LULESH, etc.

Shock
hydrodynamics
for unstructured
meshes.

Data Centric
Benchmarks

Represent emerging data
intensive workloads – Integer
operations, instruction throughput,
indirect addressing

Graph500, Hash,
etc.

Parallel hash
benchmark

Skeleton Benchmarks Investigate various platform
characteristics including network
performance, threading
overheads, etc.

CLOMP, XSBench,
etc.

Stresses system
through memory
capacity.

19

Applications and Benchmarks
(Contd.)Benchmark
Type

Description Applications Application Description

NAS Parallel
Benchmarks

A small set of programs
designed to help
evaluate the
performance of parallel
supercomputers

IS, EP, FT, CG CG - Conjugate Gradient method

Dense-matrix
multiply
benchmarks

A simple, multi-threaded,
dense-matrix multiply
benchmark. The code is
designed to measure the
sustained, floating-point
computational rate of a
single node

MT-DGEMM,
Intel MKL
DGEMM

MT-DGEMM: The source code given
by NERSC (National Energy
Research Scientific Computing
Center)

Intel MKL DGEMM: The source code
given by Intel to multiply matrix

Processor Stress
Test Utility

N/A FIRESTARTER Maximizes the energy consumption of
64-Bit x86 processors by generating
heavy load on the execution units as
well as transferring data between the
cores and multiple levels of the
memory hierarchy.

20

Measurement Tools
• etrace2

• Reports energy and execution time of an application
• Relies on the Intel RAPL interface
• Developed under DOE COOLR/ARGO project

• An example run

21

../tools/pycoolr/clr_rapl.py --limitp=140
etrace2 mpirun -n 32 bin/cg.D.32

../tools/pycoolr/clr_rapl.py --limitp=120
etrace2 mpirun -n 32 bin/cg.D.32

Output:
p0 140.0
p1 140.0

 NAS Parallel Benchmarks 3.3 -- CG Benchmark

 Size: 1500000
 Iterations: 100
 Number of active processes: 32
 Number of nonzeroes per row: 21
 Eigenvalue shift: .500E+03

 iteration ||r|| zeta
 1 0.73652606305295E-12 499.9996989885352
...
ETRACE2_VERSION=0.1
ELAPSED=1652.960293
ENERGY=91937.964940
ENERGY_SOCKET0=21333.227051
ENERGY_DRAM0=30015.779454
ENERGY_SOCKET1=15409.632036
ENERGY_DRAM1=25180.102634

Measurement Tools (Contd.)
• pycoolr

• Measure processor power usage and processor temperature
• Use Intel RAPL capability to measure power usage
• Power capping limit change capability
• Reports data in json format

• An example run

22

../tools/pycoolr/clr_rapl.py --limitp=140
mpirun -n 32 ./nekbone ex1

./coolrs.py > nekbone.out

{"sample":"temp","time":1499822397.016,"node":"pr
otos","p0":
{"mean":34.89 ,"std":1.20 ,"min":33.00 ,"max":36.00
,"0":33,"1":33,"2":35,"3":36,"4":35,"5":36,"6":36,"7":3
4,"pkg":36}}

{"sample":"energy","time":1499822397.017,"node":"
protos","label":"run","energy":
{"p0":57706365709,"p0/core":4262338717,"p0/dram
":62433931283,"p1":15467688771,"p1/core":183290
00806,"p1/dram":55726072673},"power":
{"p0":16.3,"p0/core":4.6,"p0/dram":1.4,"p1":16.7,"p
1/core":4.8,"p1/dram":0.9,"total":35.3},"powercap":
{"p0":140.0,"p0/core":0.0,"p0/dram":0.0,"p1":140.0,"
p1/core":0.0,"p1/dram":0.0}}

Experimental Testbed
• Experimental node@Tinkerlab

• Intel Sandy Bridge processor
• Provide power-capping capability
• Consists of 2 processors with 32 cores

23

Power and Performance Prediction
• We use third-order polynomial function to determine

power usage of job j running at processors’ power-cap
limit pc:

• We use exponential regression function to determine
execution time:

• Total energy consumption for job j can be determined as
following:

24

Power and Performance Prediction
Results

25

Power and Performance Prediction
Results (Contd.)

26

Experiments at Chameleon Cluster

27

Experiments at Chameleon Cluster
• We want to –

• Show demand response participation model can be feasible in real-
life setup
• Use Chameleon cluster for such experiments

• Measure power and performance
• Using tools such as pycoolr, etrace2, and racadm

• Run MPI-based applications
• Using multiple nodes inside Chameleon cluster

• Implement a scheduler algorithm inside the Chameleon
• To show effectiveness of demand response model

28

Application Execution@Chameleon

 38

 40

 42

 44

 46

 48

 50

 52

 0 5 10 15 20 25 30 35 40 45 50

Po
w

er
 (W

)

Time (s)

Effect of Running Graph500 Application

Processor 0
Processor 1

29

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35 40 45 50

Po
w

er
 (W

)

Time (s)

n#6p#0
n#6p#1
n#60p#0
n#60p#1

Power-capping Inside Chameleon
• We initially tried to use pycoolr tool to cap power

• But faced some difficulties with RAPL availability on DELL servers
at Chameleon

 DELL BIOS locked RAPL power cap
• We have been using Dell RACADM tool

• To measure power usage at runtime
• To cap power at different limit

30

Applications on Multiple Nodes
• Running MPI-based applications using existing complex

appliances on MPI protocol
• Based on the runs, we scale to large number of nodes

• Adaptive Energy and Power Consumption Prediction (AEPCP)
model for prediction to large node number

• Use the experiment results to enable demand response
• Exploiting variation in number of nodes per job
• Exploiting power capping property

31

Conclusions
• We studied

• Possibility of HPC system’s demand response participation
• We proposed a demand-response model which ensures

• Demand response participation through frequency variation, power
capping and processor allocation

• We experimented
• Real-life scientific applications on experiment cluster
• Demonstrated effectiveness of our proposed approaches

• Goal
• Running applications on multiple nodes with power-capping

property
• Show effectiveness of demand response participation on real

cluster modifying scheduling algorithm

32

Thank you all! Questions?

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

